Search

Results 1–25 of 90

Addressing

Profile • SpaceWire supports three types of addressing: Path (Physical) Addressing, Logical Addressing, and Regional Addressing. JAS uses regional addressing because it provides the greatest flexibility to create scalable networks. Regional addressing uses a two-byte scheme where the first byte identifies the router and the second byte identifies the endpoint address connected...

Communication Profile > Interconnect Technologies > SpaceWire Interconnect > SpaceWire Transport > Addressing

Analog Electronics

Profile • This instantiation of the Expansion Profile implements a 6U VPX board to include analog electronics and connectors to access incoming signals from external sensor modules. The analog electronics are connected to an RP node through the system backplane. The FPGA on the RP node filters and processes the incoming data...

Expansion Profile > Applications > Analog Electronics

Analog to Digital Converter and Multiplexer

Profile • SMAC ADC and Analog MUX The SMAC shall include an ADC to take analog measurements of board parameters (voltage, current, temperature). These values are returned to the system controller as SOH information. An analog MUX may be required so that multiple analog values can be read by the ADC. The...

System Monitoring and Communication Profile > Functional Description > Analog to Digital Converter and Multiplexer

Applications

Profile • Common instantiations of the CH profile include, but are not limited to: Host Vehicle Interface and Configuration Manager Mission Data Processing Non-Volatile Memory Storage Mass Memory Node The CH node can operate in several capacities, the most essential of which is the Host Vehicle Interface and Configuration Manager. However, several...

Command and Host Processor Profile > Applications

Applications

Profile • Instantiations of the Expansion Profile can improve the versatility of other node profiles by adding additional capability, connectivity, or capacity. Common instantiations of the Expansion Profile include, but are not limited to: Host vehicle interface Memory storage Rear transition module Analog electronics

Expansion Profile > Applications

Applications

Profile • Instantiations of this profile are intended to function as primary-to-secondary power converters, producing the secondary voltage rail(s) that are distributed to other nodes. The ‘Local POL Power Conversion’ section mentions one “or more secondary voltage rails” being produced by the PS node. One voltage rail (typically +5 or +12 V)...

Power Supply Profile > Applications

Command and Host Processor Profile

Profile • The Command and Host Processor (CH) profile defines a microprocessor-based solution suitable to construct nodes for mission data processing, spacecraft interfaces, and other applications requiring software execution on microprocessor platforms. The CH profile works alongside the RP Profile and PS Profile to implement nodes within the JAS architecture. The SMAC...

Command and Host Processor Profile

Communication Profile

Profile • The Communication Profile defines standard interfaces for facilitating communication between RP, CH, and PS nodes within a JAS system. The Communication Profile focuses primarily on communication between payload applications. It leverages industry standards to support network-based communication using serial interfaces. A common set of communication protocols for space applications has...

Communication Profile

Companion Field Programmable Gate Array

Profile • A separate radiation-hardened companion FPGA is present on the CH node to implement timing functions, custom peripherals, and bridge to proprietary interfaces that may not be directly supported by the microprocessor. The FPGA typically attaches to the microprocessor through industry-standard bus interfaces, though the exact connection method will vary based...

Command and Host Processor Profile > Functional Description > Companion Field Programmable Gate Array

Discrete Signaling

Profile • SMAC Discrete I/O and Data Bus Signaling The SMAC has capabilities to read and drive both discrete I/O values and data buses. The FPGA I/O dedicated for this purpose can be either configured as dedicated inputs and outputs or can be bi-directional with input or output behavior configured through the...

System Monitoring and Communication Profile > Functional Description > Discrete Signaling

Expansion Profile

Profile • The Expansion Profile describes a board that provides new capabilities and/or additional resources that would otherwise not be available in standard node instantiations. These modules are not intended to operate standalone and will usually not have individual processing capabilities. Rather, these boards will be populated with components that allow for...

Expansion Profile

Extended Capabilities

Profile • CH Node Extended Capabilities Customization and extension of CH node capabilities can be realized through instantiations of the Expansion Profile. In instances where custom electronics are needed (for example, spacecraft interfaces or attachments to expansion memory), mezzanines or custom backplane routing to other boards connect electronics to the CH node...

Command and Host Processor Profile > Functional Description > Extended Capabilities

Extended Capabilities

Profile • RP Node Extended Capabilities The flexibility provided by FPGAs allows nodes built upon the RP profile to accommodate custom connectivity to other components, devices, or even other nodes. Customization and extension of RP node capabilities can be realized through instantiations of the Expansion Profile. In instances where custom electronics are...

Reconfigurable Processing Profile > Functional Description > Extended Capabilities